GA Picture Formats

Spatial	Temp	oral	
''X'' x ''1000''	23.97 / 24 29.97 / 30 59.94 / 60	progressive progressive interlaced	
1280 x 720	23.97 / 24 29.97 / 30 59.94 / 60	progressive progressive progressive	

- The minimum GA HDTV receiver must decode and present on its display all of these transmitted formats
- The display itself is a receiver implementation option

Chattal

Receiver Format Conversions

Transmitted Format

Tomporol

Conversions to 720 Line Progressive Display

Spauai	Ţ	emporai	
"X" x "1000"	23.97 / 24	progressive	3:2 frame repeat and 3:2 interpolation
	29.97 / 30	progressive	2:1 frame repeat and 3:2 interpolation
	59.94 / 60	interlaced	2:3 interpolation/de-interlace
1280 x 720	23.97 / 24	progressive	3:2 frame repeat
	29.97 / 30	progressive	2:1 frame repeat
	59.94 / 60	progressive	none

Snatial

Receiver Format Conversions

Transmitted Format

Temporal

Conversions to 1000 Line Interlaced Display

Spatiai		cinporai	
''X'' x ''1000''	23.97 / 24 29.97 / 30 59.94 / 60	progressive progressive interlaced	3:2 frame repeat and interlace 2:1 frame repeat and interlace none
1280 x 720	23.97 / 24 29.97 / 30 59.94 / 60	progressive progressive progressive	3:2 frame repeat and 3:2 interpolation 2:1 frame repeat and 3:2 interpolation 3:2 interpolation

"X" x "1000" Format Influences

...the GA and ACATS have not yet resolved this issue...

Film

- Film interoperability is of great economic importance
 - about 80% of prime time TV is produced on film
- The GA HDTV system has been designed to directly deliver "electronic film" formats in progressive scan
- "X" x "1000" and 1280 x 720 at 24 fps
 - 24 fps frame rate identical to film simplifies transcoding
 - progressive scan and square pixels
 - conversion to display rate performed in receiver is an economical approach because compression already requires frame memory in receivers
- Display frame rate is a receiver option, for example:
 - 3:2 conversion to a 60 fps display
 - 3:1 conversion to a 72 fps display
 - 2:1 conversion to a 48 fps light valve projection display?

NTSC

- NTSC interoperability is of great economic importance
 - simulcast requires broadcast conversion and dual standard receivers over the lifetime of NTSC
- 1728 x 960 (1440 x 1080?) formats
 - initial 59.94 Hz mode identical to NTSC simplifies transcoding and dual standard receivers
 - 2:1 (9:4) vertical relation to NTSC simplifies transcoding and HDTV/NTSC receivers
 - 2H deflection for lowest cost receivers
- 1280 x 720 formats
 - initial 59.94 Hz mode identical to NTSC simplifies transcoding and dual standard receivers
 - 3:2 vertical relation to NTSC simplifies transcoding and dual standard receivers
 - 3H deflection for low cost progressive scan receivers

HDTV Production

- Production/transmission interoperability is of great economic importance
- U.S. HDTV production standard will most likely be 1920 x 1080 60 Hz interlaced, with a later step to progressive
- 1440 x 1080 (1728 x 960?) formats
 - initial 59.94 Hz mode identical to NTSC simplifies transcoding and dual standard receivers
 - 9:4 (2:1) vertical relation to NTSC
 - 3:2 vertical relation to 720 line format
 - 3:4 (≈8:9) horizontal relation to 1920 production format
 - ≈2H deflection for low cost dual standard receivers

30 fps Film

- The 30 fps "electronic film" formats provide for higher frame rate progressive capture than "conventional" film
- "X" x "1000" and 1280 x 720 at 30 fps
 - 30 fps frame rate reduces motion artifacts
 - progressive scan and square pixels
 - conversion to display rate performed in receiver
 - this is an economical approach because compression already requires frame memory in receivers
- Display frame rate is a receiver option, for example:
 - 2:1 conversion to a 60 fps display
 - 12:5 conversion to a 72 fps display
 - 3:1 conversion to a 90 fps display

Computer Architecture

...windowing systems inherently require picture format conversions...

- Computer displays are progressive scan, >60 fps
- No single display standard in the computer industry
- Key architecture principle: window system manages display

- Window system and supporting hardware will perform:
 - frame rate conversion
 - image scaling (and format conversion)
 - deinterlacing (when needed)

Computer Interoperability

- Computer interoperability was a key design consideration
 - square pixel and progressive scan formats
- Advanced windowing systems will perform picture scaling in order to resize image windows
 - can also perform picture format conversions and deinterlacing as required (necessary to deal with NTSC)
 - many approaches and quality levels are possible
- Interoperability at the compression layer is of much greater importance than simple picture layer issues
 - significantly lower I/O bandwidth
 - compressed video will be used on storage media, networks, etc.

· ·		Cost Considerations
		Low C

- DRAFT ¬

F Grand Alliance

GAR

Grand Alliance

DRAFT -

A Receiver <u>Parts</u> Cost Perspective

34"Direct View \$1,006

56"Projection \$1,522

Display: \$763 Display: \$1,226

Speakers: \$ 30 Speakers: \$ 30

Decoders: \$127 Decoders: \$127

Cabinet: \$140

Source: AD-HDTV data from SS-WP3 Final Report

Cabinet: \$ 90

Low Cost Receiver

- Display and associated circuitry are the largest cost elements of a receiver
 - The ability to produce low-cost receivers is influenced more by displays than by electronics
- It is important to enable a broad spectrum of products with differing quality and capability vs. cost
 - Lowest cost receivers can use a 1000 line interlaced display with 2H deflection
 - Other receivers can use a 720 line progressive display with 3H deflection
 - High end receivers can use a 1000 line progressive display with 4H deflection
- It is important to encourage a migration to higher quality and capability products in the future
 - Enabled by the GA layered system architecture
 - Interfaces at each layer can appear over time

Low Cost VCR

- HDTV recording will directly record the GA compressed bit stream
- VCR capability was demonstrated by all predecessor systems
- VCR cost is dominated by the required data rate
- Digital VCR products for NTSC will likely preceed HDTV into the marketplace, and will form the basis for HD-VCRs
- The data rate used in intra-field compressed NTSC VCRs will be ≈ 50 Mbps, with a 25 Mbps long-play mode
- THEREFORE: VCRs for HDTV at 18 Mbps will leverage an existing production base to achieve low cost

Extensibility and Migration Plan

DRAFT -

F Grand Alliance

1

Migration to 60 Hz

- Today's production and broadcast is all based on 59.94 Hz
- During the introduction of HDTV, a 59.94 rate allows most economical transcoding between NTSC and HDTV
- Over the long term, 60 Hz has many advantages, but it requires 1001/1000 temporal rate conversion with NTSC
- The Grand Alliance system provides both 60 and 59.94 transmission, so that broadcasters can "throw the switch" when justified by the mix of HDTV/film vs. NTSC source material

Extensibility and Migration Plan

- Long term goal is "1000" line progressive scan at 60 Hz
- The GA believes that this goal can be achieved by sending enhancement data that will complement the initial HDTV data stream
 - coding efficiency will be an important issue
- It is feasible to base enhancement coding on any or all of the initial transmission formats
- Packet-level extensibility is a fundamental enabler of this principle
- Transmission capacity for enhancement data must be created, possibly using more power or an additional channel as NTSC stations go out of service

Packet-Level Extensibility

- The GA system has inherent packet-level extensibility
- All packets have a PID header/descriptor
- New Service IDs for enhancement data are readily added and multiplexed into the packet stream

video	video	video	NEW1 data	video	NEW2 data
1				i .	

 Service ID header/descriptor eliminates backward compatibility problems - receivers ignore service types that they cannot process

	_
	II)
	a
	E
7	
•	- 1

- DRAFT 7

F Grand Alliance

Z.

Interoperability Summary

- The GA System has been designed with a heavy emphasis on interoperability
- Within the context of a transmission standard, we immediately create a high degree of interoperability among very different industries
- The Grand Alliance approach is to provide flexibility that simultaneously meets different needs and *facilitates* interoperability, rather than attempting to force a particular approach on a given application
- This flexible approach will allow natural economic forces to promote the migration to modes with the greatest interoperability